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ABSTRACT
Cells are the building blocks of human tissues and organs, and the
distributions of different cell-types change due to environmental
or disease conditions and treatments. Single-cell RNA sequencing
is used to study heterogeneity of cells in biological samples. To
date, computational approaches aided in the discovery of dominant
and rare cell-types and facilitated the construction of cell atlases.
Integration of new data with the existing reference atlases is an
emerging computational problem, and this paper proposes to frame
it as a multi-target prediction task, solvable using supervised ma-
chine learning. We systematically and rigorously test 63 different
predictors on synthetic benchmarks with different properties. The
best performing predictor has high Cohen’s Kappa scores and low
mean absolute errors in single-batch and multi-batch integration
experiments.
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1 INTRODUCTION
Cells are the building blocks of all multi-cellular organisms, in-
cluding humans. Each cell can be characterized on the basis of its
spatial, structural, functional, molecular or malignant properties.
RNA-sequencing (RNA-seq) is a high-throughput experimental ap-
proach that measures the quantities and determines the sequences
of active gene transcripts in a sample [17]. There are two major
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types of RNA-seq experiments, namely, bulk RNA-seq and single-
cell RNA-seq (scRNA-seq). Bulk RNA-seq experiments study av-
erage gene expression patterns of an entire population of cells in
a sample, while scRNA-seq experiments study gene expression in
each cell individually [2].

To date, scRNA-seq has been performed in samples derived from
different organisms, tissues, and organs [5, 9, 13]. A great number
of clinically-relevant scRNA-seq datasets have been also released,
including scRNA-seq data of patients with COVID-19 disease, can-
cer, and many others. These data are large, high-dimensional and
zero-inflated due to the detection limits of scRNA-seq instruments.
Therefore, to derive biological and clinical insights from these data,
machine learning (ML) has been used to study differential gene
expression of individual cells, and to discover dominant and rare
cell-types that correlate with different conditions, diseases and
treatments.

Computational methods for scRNA-seq data analysis are abun-
dant and rapidly evolving. Nevertheless, unsupervised methods,
such as cluster analysis, dominate the field. Clustering methods
partition scRNA-seq data into distinct subsets with the purpose of
the discovery of cells of similar types and states. Ideally, each cluster
should contain cells with similar expression profiles. To discern
the identity of each cell-type in a cluster, marker genes must be
found that are highly expressed in that cluster compared to all of
the other clusters. These gene markers are then used to assign the
cell-type for the entire cluster. The challenges and limitations of
cluster-based approaches are well known [8].

First, each clustering algorithmmakes specific assumptions about
the distribution of data and comes with user-defined parameters,
such as the number of clusters or the number of nearest neighbors.
Because true data distribution is unknown, cluster-based techniques
may generate partitions that are not pure, in which one cluster con-
tains multiple cell-types or in which one cell-type could be split
into multiple clusters. Moreover, cell-types and cell-states may be
similar to each other, which presents a challenge to separate them
into distinct groups. Second, the use of gene markers to assign
cell-types requires expert knowledge of these specific markers, and
sometimes they are not well characterized or they may be difficult
to find in the literature. Some markers may be also expressed by
more than one cell-type, and some cell-types may have no known
markers.

Robust differential gene expression analysis of clusters requires
sufficient numbers of cells to obtain statistically meaningful results.
Therefore, it is common to increase the power of such analyses by
combining multiple datasets into one and performing cell-type de-
tection and differential gene expression analyses on the integrated
data. Integration is a process that combines multiple datasets into
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one and derives low-dimensional representation of the aggregated
data. Reference-free or unsupervised data integration is prone to
its own set of challenges and limitations [8]. For example, technical
batch effects may bias the results because cells tend to cluster based
on the specific experimental conditions rather than their types [6].
Therefore, specialized integration tools have been developed [7, 10].

The number of integrated and annotated scRNA-seq datasets has
been increasing. Known as cell atlases, they can serve as references
for the integration and annotation of newly sequenced scRNA-seq
data. Reference-based integration can reduce computational and
labor costs of unsupervised methods. Integration of new data with
an existing cell atlas can be framed as a supervised ML problem,
where outcomes for new data are predicted using a mapping func-
tion learned from past data. Prediction of categorical outcomes or
labels, such as cell-types, is known as the classification task, while
the prediction of numeric outcomes is considered a regression task,
respectively. Therefore, unlike reference-free integration, where
the low-dimensional representations and cell-type assignments are
discovered without prior knowledge, the aim of reference-based
data integration is to accurately embed new high-dimensional data
onto an existing low-dimensional representation and annotate them
by predicting categorical labels of new cells.

In this work, we make three main contributions. Our first contri-
bution is methodological. We formulate the reference-based scRNA-
seq data integration problem as the multi-target prediction problem.
We design and implement 63 different predictors to solve the three-
target problem, and test them systematically and rigorously on
synthetic datasets with different properties. Second, we demon-
strate empirically that the feed-forward neural network (FFNN),
coupled with the Ridge regression, can accurately reconstruct two-
dimensional representations of synthetic datasets and predict cell-
types.We show that our three-target predictor outperforms baseline
distance-based methods implemented in the existing tools and it
requires significantly less training and inference times. Finally, our
third contribution highlights broader considerations of practical
reference-based integration of scRNA-seq data, such as the required
minimum number of cells and batches.

2 METHODS AND DATA
Given a matrix M of size n × d , where n is the number of cells, d
is the number of genes, andmi j is the count of active transcripts
of gene j in cell i . Assume that each cell has a unique cell-type
drawn from C = {c1, c2, . . . , ck }, such that k ≥ 2. Also, assume
that each cell can be embedded onto a p-dimensional space, and its
embedding is x = (x1, x2, . . . , xp ), where p ≥ 1.

The prediction task is to automatically predict multiple targets,
namely embedding values, xi , and a cell-type label, ci , for each cell
in a given count matrix M . Recall, that values of x are numeric
and values of c are categorical. In this work, we focus on a three-
target prediction problem, which can be easily extended to a greater
number of targets. In this work, we focus on a three-target predic-
tion problem, which can be easily extended to a greater number of
targets.

The input to the predictor is a count matrix of gene expression
values and the outputs are cell’s embeddings, x = (x1, x2), and
a cell-type label, ci . In this work, we choose to use the Uniform

Manifold Approximation and Projection (UMAP) to compute cell’s
embeddings, which is a flexible and fast non-linear dimensionality
reduction method [12] and a standard tool in scRNA-seq workflows
and visualizations.

2.1 Three-Target Predictor
We solved the problem by constructing a model for every target
independently and combining them into the multi-target predic-
tion [16]. Our best performing predictor was a hybrid, comprising
Ridge regression for the prediction of x values and a FFNN for the
prediction of cell-types, respectively.

Ridge regression is a method for fitting multiple-regression mod-
els. Ridge regression minimizes the sum of the error term along
with sum of squares of coefficients, which is called the regulariza-
tion term. In our implementation, the regularization was given by
the L2-norm.

To predict cell-types, we used a FFNN, comprising 3 hidden
layers. The first hidden layer had 256 hidden nodes, the second and
third hidden layers had 128 and 1 hidden nodes, respectively. The
nodes of the input layer accept raw expression values of M . All
nodes in the input layer were connected to all nodes in the first
hidden layer, and all nodes in the last hidden layer were connected
to all nodes in the output layer. Likewise, all hidden layers were
interconnected, forming a dense network. We added a dropout layer
between the first and the second layer, with the dropout rate of 0.6.
We used a rectified linear unit (ReLU) activation function in the
hidden layers, and an L2 kernel regularizer with the regularization
factor of 0.01. The number of nodes in the output layer was set to the
number of cell-types, and a softmax activation function was used
to output a score for each cell-type. These scores were converted
into categorical cell-type labels using an argmax function. We used
RMSprop optimizer with a learning rate of 1E-4, and a categorical
cross-entropy as a loss function, respectively. Fifty epochs were
used for training, and batch sizes were set to 128.

2.2 Alternative Multi-Target Predictors
We considered several alternative multi-target predictors. These
alternative methods were inspired by some of the prior works
on cell-type prediction in scRNA-seq and bulk RNA-seq. As an
alternative to Ridge regression, we considered k-Nearest Neighbors
(kNN) and extreme gradient boosted tree (XGB) regressions for
the prediction of x targets, and for the prediction of cell-types, we
considered six neural networks and two classifiers, kNN and XGB
classifiers. Therefore, in total, we considered 63 (3×3×7) alternative
combinations of predictors for the three-target prediction problem.
In lieu of the available code in prior works, we either adopted
published parameters as defaults, or tuned hyper-parameters via
grid search.

In kNN, the similarity was measured using the Euclidean dis-
tance, and we set the number of neighbors to 15, which was deter-
mined by experimentation.

XGB algorithm builds its model in a greedy fashion; trees that
provide the most gain to the model are chosen first [3]. We set the
number of iterations to 50. We used a multi-class logarithmic loss
function to predict cell-types. The output was a vector of scores
for all unique cell-types, which were converted into categorical
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cell-type labels using an argmax function. In XGB regression, L2
regularization was used.

In addition, we evaluated convolutional neural networks (CNN),
autoencoders (AE) and residual networks. CNN and AE models
were implemented with 2 different input dimensions. In the one-
dimensional (1D) encoding, networks accepted normalized and
scaled gene expression values. In the two-dimensional (2D) encod-
ing, we converted 1D expression vectors into matrices using an
approach developed for bulk RNA-seq data [11, 14]. Specifically,
genes were ordered based on their chromosomal locations, which
placed genes with similar expression values near each other. Then,
each expression vector was reshaped into 102 × 102 matrices by
padding with zeros at the last row, if needed.

3 DATA SETS
Twelve simulated benchmarks were created using the Splatter pack-
age (version 1.18.1) [18]. To simulate benchmarks SIM1 to SIM5, we
created single batches of 100,000 cells, with the number of genes
set to 720. Each benchmark had a different number of cell-types,
ranging from 4 (SIM1) to 64 (SIM5). To simulate benchmarks SIM6
to SIM9, we set the total number of cells to 50,000 and the number of
genes to 720. We varied the number of batches from 5 to 25, keeping
the number of cell-types in each batch at 2. These benchmarks were
representative of the scRNA-seq experiments, where samples were
collected at different time-points, in different laboratories or using
different sequencing platforms, for example. For a more realistic
integration, we created benchmarks SIM10 to SIM12, each compris-
ing 5 batches. The number of cell-types in each benchmark differed,
ranging from 4 (SIM10) to 16 (SIM12). Moreover, we simulated 4,000
cells of each cell-type and hence, the total number of cells in these
benchmarks ranged from 16,000 (SIM10) to 64,000 (SIM12).

In preprocessing, we followed the standard workflow imple-
mented in the Seurat package (version 4.0.6) [15], followed by the
harmonization using Harmony package and dimensionality reduc-
tion using UMAP.

3.1 Computing Resources
All models were implemented using the Tensorflow library [1] and
Keras Application Programming Interface [4]. The code was written
in the Python programming language, and all experiments were
performed on a High Performance Computing cluster.

4 RESULTS
We considered 63 different predictors and tested them in 5-fold
cross-validation. To evaluate the predictions of target x , we used
mean absolute error (MAE) as the criterion of performance, with
smaller values indicating better performance. To evaluate cell-type
predictions, we focused on Cohen’s Kappa, which ranges between
-1 and 1. Higher values imply better performance.

The training and inference times of cell-type predictors varied
significantly, with ResNet and XGB being the slowest. The average
training time of ResNet was between 63 to 76,583 seconds (sec) and
testing time was between 0 to 165 sec in all benchmarks. XGB’s
training time ranged between 6 to 11,922 sec and testing time be-
tween 0 to 23 sec, respectively. Interestingly, 2D classifiers CNN2D
and AE2D were fast, requiring only 0 to 7 sec of testing time per

benchmark. Training times of AE1D and AE2D were between 0 to
442 sec and between 1 to 255 sec, respectively. Likewise, CNN2D
needed between 2 to 542 sec to train and CNN1D required between
3 to 1092 sec of training time. Finally, the average training time of
FFNN was between 3 to 402 sec and testing time was between 0
to 20 sec for all benchmarks. We note that all time estimates were
collected from training and testing of models on exactly the same
folds, to avoid biasing them. Also, as expected, greater training and
test times were observed for benchmarks with larger number of
cells. Finally, ResNet, XGB, AE1D and AE2D had larger memory
consumption than the other methods.

All 1D models and XGB had better results than the 2D models.
FFNN was the best performing neural network and the second best
performing classifiers were trained using CNN1D. AE1D, ResNet
and XGB failed to train good models for some of the datasets.

With respect to the prediction of target x , Ridge regression out-
performed kNN and XGB regression models and had significantly
faster training and inference times. Therefore, based on the three
criteria, such as performance, compute time and memory require-
ments, we finalized our three-target predictor as a hybrid, compris-
ing two Ridge regression predictors for UMAP coordinates and a
FFNN classifier for the cell-type prediction.

To better understand predictor’s sensitivity to the training size,
in particular to the number of cells per cell-type, we simulated 5
benchmarks (SIM1 to SIM5) with the number of cell-types ranging
from 2 to 64. By keeping the total number of cells in each benchmark
constant, we studied how the results changed when the number
of cells per cell-type was reduced from 25,000 to about 1,500. We
observed a steady increase in the absolute prediction errors of the
two values of x (Table 1). Moreover, we saw a clear trend of de-
creased performance in cell-type predictions. Kappa scores dropped
from 1.0 to 0.68 when models were trained with fewer samples per
each cell-type. Therefore, we conclude that at least 6,500 samples
per cell-type were needed in single-batch integration and greater
training sample sizes were needed for a more accurate prediction
of embeddings.

Table 1: Performance of three-target predictor on simulated
benchmarks. Shown are benchmark ID, number of batches,
cells, and cell-types. The number of genes was 720 in all
benchmarks. Predicted performance as measured by Co-
hen’s Kappa and two MAE scores (MAE-1 and MAE-2).

ID Batches Cells Types Kappa MAE-1 MAE-2

SIM1 1 100,000 4 1.00 1.11 1.37
SIM2 1 100,000 8 0.99 0.97 1.97
SIM3 1 100,000 16 0.97 1.86 2.94
SIM4 1 100,000 32 0.84 1.71 1.54
SIM5 1 100,000 64 0.68 1.92 0.99
SIM6 5 50,000 2 1.00 1.78 5.95
SIM7 10 50,000 2 1.00 3.29 5.15
SIM8 20 50,000 2 0.99 4.29 6.50
SIM9 25 50,000 2 0.99 4.39 5.75
SIM10 5 16,000 4 1.00 3.62 9.06
SIM11 5 32,000 8 0.97 7.78 7.93
SIM12 5 64,000 16 0.82 2.48 8.64
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We tested the performance of the proposed predictor in the inte-
gration of individual batches. Using SIM7 to SIM12, we repeatedly
trained models on all batches, except one, and predicted targets
for the withheld batch. In these experiments, we observed higher
prediction errors than in the experiments with the single-batch
integration (Table 1). Average MAE values for the first target in-
creased from 1.51 (SIM1-SIM5) to 3.98 (SIM6-SIM13). Interestingly,
average MAE values for the second target were higher and they also
increased from 1.76 to 6.71 when we moved from single-batch to
multi-batch integration. We note that both, the number of batches
and the number of cell-types within each batch impacted the accu-
racy of the predictions.

Therefore, we confirmed our findings from the single-batch ex-
periments, about the sensitivity to the number of cells of different
cell-types, available for training. For instance, Kappa scores steadily
decreased from 1 to 0.82 in the integration of 5 batches compris-
ing 4 to 16 cell-types. Alongside, MAE values were higher than
MAE values of SIM6 to SIM9, where the batches comprised only 2
cell-types (Table 1).

Having single and multi-batch simulated benchmarks allowed us
to compare systematically the proposed method with the baseline
kNN predictors, which are commonly used in reference-free inte-
gration. Overall, FFNN and Ridge regression outperformed baseline
kNN methods. Interestingly, however, we noticed sensitivity to
batch effects. For example, while the FFNN predictor had slightly
lower NMI scores compared with the kNN predictor on SIM1-SIM5
benchmarks, it had significantly higher NMI scores in multi-batch
benchmarks SIM6-SIM12. On average, NMI scores of SIM1-SIM5
were 0.91 for kNN and 0.88 for FNN, while NMI of multi-batch
benchmarks were 0.85 for kNN and 0.96 for FFNN, respectively.

Similarly, Ridge regression lagged slightly behind kNN and XGB
methods in single-batch integration on SIM1 to SIM5 benchmarks,
yet it significantly outperformed the other 2 methods in the multi-
batch integration of the remaining benchmarks. Overall, MAE
scores of Ridge regression were 3.03 and 4.81 for UMAP-1 and
UMAP-2, respectively. These values were 3.81 and 4.98 for kNN
predictions and 2.84 and 4.86 for XGB, respectively.

Based on these results, we recommend to use FFNN and Ridge
regression over kNN-based methods in reference-based integration.
Predictors trained with these methods perform better in multi-
batch settings and they are also significantly faster than their kNN
baselines.

5 CONCLUSION
Advances in the next-generation sequencing technologies made
it possible to examine gene expression at a single-cell resolution.
As the result, large high-dimensional datasets became available
for computational studies into the heterogeneity of cells’ popula-
tions. This work addressed two grand computational challenges of
scRNA-seq data science, namely reference-based data integration
and systematic comparison of computational approaches, methods
and tools. We formulated the problem of reference-based data in-
tegration and annotation as a supervised multi-target prediction
task. Rigorous computational testing on synthetic datasets showed
that a hybrid predictor, comprising feed-forward neural network
and Ridge regression, outperformed alternative predictors and the

baseline k-Nearest Neighbors algorithms. In addition, this work
provided practical insights about the utility of the proposed ap-
proach and its sensitivity to properties of the datasets. Future work
will focus on the parallelization of the proposed approach.
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